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If the TDS correction of Bragg reflexions is evaluated by integrating the TDS interference function over 
the range of measurement, the correction is usually, as Cochran has pointed out, too large. The 
magnitude of the 'overcorrection' is difficult to estimate since the proper evaluation of the correction 
involves the convolution of the interference function with the resolution function of the experimental 
set-up. Thus, in general, a sixfold integration is involved. Here calculations performed with a simple 
model which contains the essential features of the problem, and for which the integrations can be 
carried out properly, are reported. It has been found that the size of the 'overcorrection' depends only 
a little upon the absolute size of the range of measurement but strongly upon the size of the range of 
measurement relative to the magnitude of instrumental broadening (Bragg peak). With decreasing 
range of measurement relative to the Bragg peak the 'overcorrection' increases rapidly. For typical 
experimental situations of single-crystal measurements the 'overcorrection' seems to amount to about 
5 to 20 % of the TDS correction. 

1. Introduction 

If one wants to determine the intensity of the Bragg 
reflexions most accurately the thermal diffuse scatter- 
ing (TDS), which has sharp maxima at the reciprocal- 
lattice points, has to be subtracted from the intensity 
measured at the reciprocal-lattice points. This 'TDS 
correction' has usually been evaluated in the past by 
integrating the TDS interference function over the 
range of measurement of the Bragg peak. Cochran 
(1969) pointed out that this procedure suffers from 
one main deficiency: through some instrumental fac- 
tors (divergence of primary beam, finite crystal size, 
mosaic spread, wavelength distribution) the intensity 
profile is broadened so that the peak of this profile at 
the reciprocal-lattice points is less sharp than that of 
the interference function. The proper evaluation of the 
TDS correction demands the integration of the actual 
profile over the range of measurement, and this will, 
in general, result in a smaller value of the correction, 
cf. Cochran (1969). The integration over the inter- 
ference function thus leads to an 'overcorrection' which 
may contain larger errors than those which one wanted 
to eliminate in the past by making more accurate as- 
sumptions concerning the form of the range of meas- 
urement and the anisotropy of the TDS interference 
function. 

In actual practice the accurate development of Coch- 
ran's proposals involves great difficulties. In evaluat- 
ing the correction the convolution of the TDS inter- 
ference function with the three-dimensional resolution 
function is involved, and this amounts to a sixfold in- 
tegration. In general, this integration can be performed 
neither analytically nor numerically. Furthermore, the 
actual resolution functions for a given experimental 
set-up are usually not precisely known. One way out 
is proposed by Walker & Chipman (1970), and Jen- 
nings (1970) in that they treat the effects of instrumen- 

tal broadening one-dimensionally (in the direction of 
scan) and try to eliminate them in the two other direc- 
tions by opening wide the detection window. 

In order to gain insight into the magnitude of the 
effect of three-dimensional instrumental broadening 
we want to treat the problem three-dimensionally. Of 
course, this can only be done by assuming a simple 
model with respect to interference and resolution func- 
tions. The model which we use does not strictly cor- 
respond to normal experimental situations but it con- 
tains the essential features of the problem and can be 
treated mathematically. In the following we first de- 
scribe the TDS interference and resolution functions 
which we use. Then we consider the resulting convolu- 
tion integrals and their solutions. They provide the 
actual TDS correction. A factor R is defined, with 
0 < R < 1, which formally describes the effect of limited 
instrumental resolution on that TDS correction which 
is obtained by using only the interference function 
(R = 1 holds for the ideal case of unlimited resolution). 
Numerical results are computed and will be discussed. 

2. Interference and resolution functions 

In this paper we use the spherical-symmetrical approx- 
imation 

C 
I i ( r ) -  r2 (2.1) 

for the TDS interference function, r is the distance of 
a reference point to the reciprocal-lattice point under 
consideration, expressed in units of a cubic reciprocal 
lattice. C is a constant. The approximation (2.1) cor- 
responds to choosing the first order of the acoustic 
spectrum with a mean elastic constant, cf. Nilsson 
(1957), Cooper & Rouse (1968) and Cochran (1969). 
According to Cochran (1969) only the first order of the 
acoustic TDS spectrum matters; neither the higher 
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orders nor the optic modes give relevant contributions. 
As Skelton & Katz (1969) have shown with an ex- 
ample, the use of a spherical interference function of 
type (2.1) gives rise to an error of less than 5% of the 
correction. The constant C in equation (2.1) only con- 
tains physical constants, the lattice constant of the 
cubic crystal, and the magnitude of the reciprocal-lat- 
tice vector considered, of. Cochran (1969, equation 
3.4). 

Equation (2.1) is not quite accurate for finite crys- 
tals: It(r) becomes infinitely large for r--0.  This is 
physically meaningless and also causes trouble in the 
final numerical integration, which we shall encounter 
below. An upper limit of Ii(r) for finite crystals can be 
obtained as follows. Let the crystal have N1 cells in 
each direction of space: then, by using the cyclic 
boundary condition, the largest wavelength in the crys- 
tal is 2max =N~a, and the respective interference max- 
imum is located at a distance of 2marx = Nx - 1 a A -  1 from 
the reciprocal-lattice point considered, c f  James (1948, 
p. 202). Instead of equation (2.1) we now may write, 
to a fully sufficient approximation, 

C 
I x ( r ) -  r2 + N _ 2 • (2.2) 

For r = 0  we now have I x = N  2, and the singularity is 
thus removed. 

In order to simulate instrumental broadening, Gaus- 
sian resolution functions will be used. Gaussian func- 
tions are probably best suited to express actual profiles, 
and they have the advantage of converging rapidly to 
zero. We introduce orthogonal coordinates xyz  and 
x'y 'z '  in reciprocal space, scale them in reciprocal-lat- 
tice units, and refer them to the reciprocal-lattice point 
considered. Then, for three, two, and one-dimensional 
instrumental broadening, we use the functions 

G(xyz)=(a/rc)3/z exp[_a(x  2+y2+z2)] ,  (2.3) 

a 

G(xy)= ~-exp [-a(xZ + y2)] , (2.4) 

G(z)=(a/z@/2 exp ( - a z  2) (2.5) 

respectively. All functions are normalized, i.e. their in- 
tegrals from - oo to + eo are unity. It would, of course, 
be better to use a normalized Gaussian function with 

three parameters according t o V  abc3- -  - -  exp { - ( a x  2 + by 2 
[ - -  

+cz2)} but then the convolution integrals cannot be 
solved. However, our three special functions still give 
a representative survey since, in actual practice, the 
background is not measured at a single point but is 
rather averaged over a certain area in reciprocal space, 
c f  Cochran (1969). Therefore the effect of the extreme 
values of the parameters, a = b, c = c~ in equation (2.4), 
and a, b = c = o o  in equation (2.5) would largely be 
averaged out in a real experimental situation. 

The spherical symmetry of most of our functions 
forces us to use a spherical range of measurement. 

Cooper & Rouse (1968) showed, with the example of 
sodium chloride, that the assumption of a spherical 
range of measurement does not give rise to large errors 
in the TDS correction provided the size of the sphere 
is properly chosen. Lucas (1969) used the spherical ap- 
proximation with potassium chloride and compared 
his results with M6ssbauer-spectroscopic data, whereby 
he obtained reasonable agreement. 

The use of the interference function (2.2), and the 
resolution functions (2.3), (2.4), and (2.5) enables us 
to evaluate five of the six integrations analytically, the 
sixth one must then be calculated numerically. 

3. Convolution integrals 

In order to evaluate the correction we need the actual 
intensity profile and the integral over the profile. The 
three-dimensional profile is given by 

+ ~ )d H(x')  = Ix(x ' -  x)G(x 3x, 

or by 

(3.1a) 

f 
+ o o  

H ( x ' ) =  I i ( x ) G ( x ' - x ) d a x .  (3.1b) 

c f  Hosemann & Bagchi (1962, p. 72), Als-Nielsen & 
Dietrich (1967) and Cochran (1969). The integral of 
the profile over the range of measurement is then 

c~R=IvH(X' )dax '=(H(x ' ) )V ,  (3.2) 

where the subscript R emphasizes the fact that we have 
taken into account limited experimental resolution. V 
is the volume of the range of measurement and the 
brackets ( ) indicate the average taken over this range. 
By analogy with equation (3.2) we obtain for the back- 
ground 

~'R= <~ H(x')>)> V, (3.3) 

where the double brackets indicate the average taken 
over the area of background measurement [cf. Coch- 
ran, 1969, equation (3.9)]. The TDS correction, ex- 
pressed in terms of the observed and corrected struc- 
ture factors, may then be written as 

IFobsl2 = [Fcorr[2(1 +O~R--O~'R). (3.4) 

Let ct-ct' be the correction which is obtained solely 
with the interference function, then the factor 

t 
R -  O~R--O~ R ~_~,  (3.5) 

formally describes the effect of limited experimental 
resolution on the correction c~-~'. Since the effect of 
limited resolution is to flatten the profile, one would 
expect that 

c~R<0~, ~'R>~ ' ,  R < I .  

So far the equations in this section have been kept 
completely general in order to lay out the essential 
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features of our problem concisely. In order to be able 
to evaluate the integrals we now have to choose ex- 
pedient coordinates. Because of the spherical sym- 
metry of our interference function (2.2) we introduce 
polar coordinates, x--+ 0, ~0, r, and x ' - +  0', ~0', Q. 
Using equations (2.2), (2.3), and (3.1a) we obtain for 
the profile 

x l  ~ I '~ 12'~ exp(_ar2)r2sinOdOd~odr 
r = 0  dO=O d(o=0 

× [Ni-2+oZ+r2-2rQ(sin 0 cos ~0 sin 0 '  cos ~0' 

+s in  0 sin ~0 sin 0 '  sin ~0'+cos 0 cos 0 ' ) ] -L (3.6) 

A corresponding approach using equation (3.1b) in- 
stead of (3. la) would also be possible and is proposed 
by Hosemann & Bagchi (1962, p. 69) for the calcula- 
tion of profiles. Further investigation shows, how- 
ever, that with the use of equation (3.1b) only four of 
the six integrals involved in equation (3.2) can be 
evaluated analytically. Therefore we have to drop this 
type of approach. For a spherical range of measure- 
ment with radius Q = ?, and volume V= (~)z~? 3 we now 
obtain 

o~R = H(O'q~'Q)O z sin 0'd0'd~0'dQ. (3.7) 
o : O  0 ' = 0  ~0'=0 

The integrations which occur in equations (3.6) and 
(3.7) are carried out in the Appendix. Here we present 
the results of five integrations for ~R, and of two in- 
tegrations for the profile. Using the three-dimensional 
resolution function (2.3) we obtain 

era = C4rc exp ( -  ar2)r2D(r,?)dr, (3.8) 
t r = 0  

where D(r, ?) is defined in equation (A4). For the profile 
we obtain 

H ( Q ) = C f f  r=oeXp ( -  ar2)r 

+ r ) 2 + N 1 - 2 ]  
× In [ ~ ~ j  d r .  (3.9) 

Because of the spherical symmetry o f / 1  and G the 
profile does not depend on 0'  and ~0'. 

For the two and one-dimensional resolution functions 
we determine eR and the profiles by choosing suitable 
coordinates of integration. In the two-dimensional case 
the instrumental broadening may extend in the xy 
plane. This is the plane of the angle ~0, while 0 = 9 0  °. 
Using the two-dimensional resolution function (2.4) 
we obtain 

~R2 = C2a exp ( -  ar 2)rD(r, ?)dr ,  
r = 0  

(3.10) 

H(O'Q)=C 4a l °° r=0exp (-arZ)r arc cos (D1/Dz)dr 
x (D~-D2) -1/2, (3.11) 

where 
D~=-2ors inO' ,  D2=NF2+oZ+r 2. 

In the one-dimensional case the instrumental broaden- 
ing may extend in the z direction, then 0 =  0 ° and 0 =  
180 ° for the positive and negative z directions respec- 
tively. ~o is not relevant. Using the one-dimensional 
resolution function (2.5) we obtain 

(a)"' 7 ~m = C2 exp (-ar2)D(r,?)dr, (3.12) 
r=O 

H(O'o)=c(a) l /2 I i ;~:exp( -ar2)dr  

x [Ni-2+o2+r2-2Qr cos 0'] -x. (3.13) 

For the background at 0 = ?  we obtain according to 
equation (3.3) 

~'R=-~7~?3H(O ' ?) . (3.14) 

We do not, however, calculate an average of the profile 
over a certain area of background measurement since, 
with the model we use, this would give rise to severe 
mathematical complications. But renouncing the eval- 
uation of such an average does not really affect our 
results because we do not wish to simulate a particular 
experimental situation but only want to determine the 
basic trend of the effect of limited resolution. 

The integrals over the variable r were calculated 
numerically. For this purpose a special program was 
written. In principle, the integrations have to be per- 
formed to the upper limit rma x = cx:~. In practice this is 
impossible; however, it is not necessary since the fac- 
tor exp ( - a r  2) converges rapidly to zero. A smaller 
value of rmax should be used also for physical reasons" 
the convolution operation should be performed within 
the first Brillouin zone because the interference func- 
tion (2.2) holds only within this zone. If we equate the 
volumes of the cube-shaped and spherical forms of the 
Brillouin zone, we obtain 0.620 as an effective radius 
of the zone. In the most unfavourable case the coor- 
dinates Q and r are added, hence we should fulfil the 
condition Q+rmax--<0"620- The largest value of Q is ?, 
the radius of the range of measurement. With rmax = 3y 
the integrals were already properly computed as could 
be checked by comparison with larger values of rma~. 
Thus with/'max = 37 and Omax= ? the numerical integra- 
tion is restricted to apply to the case 4?-<0.620, or 
? -< 0.155. In general 200 points were sufficient to com- 
pute the integrals properly; in some cases 1000 points 
were needed. 

4. Results 

Since a mosaic block in the crystal has about 500 to 
10000 cells in each direction of space, we have per- 
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formed the calculation with Nx = 103 and N~ = 104. The 
results are nearly the same for these two values of Nt, 
except for very small values of 7 (range of measure- 
ment) and extremely high resolution. 

The first calculations were performed in such a way 
that 7, the position of background calculation, was 
chosen so that the resolution function decreased to 
10 -3 of its maximum value, i.e. exp ( -ayZ)=  10 -3. In 
this way the constant a and the resolution function 
is defined for each value of 7. The result of this type 
of calculation was that, for quite different values of 7 
and the corresponding resolution functions, the R fac- 
tors (3.5) are nearly the same. With the three-dimen- 
sional resolution function (2.3) we obtained R3~0.81. 
With the two and one-dimensional functions, (2.4) 
and (2.5) respectively, we obtained R2 and R1 values 
which were smaller or larger than 0-8, depending on 
the value of 0', but these values were also nearly con- 
stant for all values of 7. This means that the absolute 
size of the range of measurement has only a minor effect 
on the R factor (3.5). Thus it is of primary interest to 
vary the resolution function with respect to a given 
size of the range of measurement. In order to do this 
we have introduced a second parameter, B, according to 

exp {-a(B7)2} = 10 -s. (4.1) 

Although a second parameter is, strictly speaking, not 
necessary it facilitates concise numerical representa- 
tion. In equation (4.1) B and 9' are given set values, and 
thus a is determined. 7 remains the position of back- 
ground calculation. Values of B< 1 mean that the 
resolution function falls to 10 -3 of its maximum value 
at a smaller value than 7, namely at By. Thus for small 
(large) values of B the resolution function is sharpened 
(broadened), ef. Fig. 1. In Figs. 2, 3 and 4 the R factor 
is represented as a function of the factor B, for three- 
dimensional broadening with 7=0.01 and 7=0.1, for 
two and one-dimensional broadening with 7=0.1 and 
four values of 0' (0, 30, 60, 90 °) for which the back- 
ground was calculated. 12 points of each curve were 
computed, Nt = 103. The two curves R3 vs. B lie closely 
together. The absolute size of the range of measure- 
ment is of minor importance, as stated above. But the 
size of the range of measurement relative to the sharp- 
ness of the resolution function (radius of Bragg peak) 
has a pronounced effect on the R factor. If the back- 
ground is calculated far from the Bragg peak (small 
values of B) then R _  1 ; if it is calculated very close to 
the Bragg peak then R < 1, i.e. in this case instrumental 
broadening reduces the correction c t - , '  markedly. For 
the two and one-dimensional resolution functions there 
is also a strong dependence of the R factor on the 
direction in which the background is calculated. If the 
background is calculated in a direction of instrumental 
broadening (0 '=90  ° for R2, 0 ' = 0  ° for R1) then R at- 
tains its minimum value; if the background is calculated 
in a direction perpendicular to instrumental broaden- 
ing then R is nearly unity, c f  Figs. 3 and 4. It is re- 
markable that R2 and R1 are smaller than R3 when- 

ever the background is calculated in a direction of in- 
strumental broadening. In actual practice these ex- 
treme situations will never be realized, but our calcula- 
tion shows that even one or two-dimensional instru- 
mental broadening can have a pronounced effect on 
the R factor, and thus on the correction ~ - ~ ' .  

Our results follow, of course, directly from the for- 
mulae in § 3, but a more illustrative explanation of 
them can be obtained by comparing the interference 
function with the actual profiles. Interference func- 
tion and some profiles are shown in Figs. 5, 6, and 7; 
the resolution functions were calculated for B7=0.05 
and By=0.1; Nx= 103. In each case the peaks of the 
profiles at ~o = 0 are much lower than those of the inter- 
ference functions. For larger values of 0 (0>0"5 By) 
the profiles attain larger values than the interference 
function, and for very large values of 0 the profiles ap- 
proach the interference function closely. Hence, if the 
background is calculated far from the Bragg peak (i.e. 

B y  Y P 
Fig. 1. Definition of the parameter B. The constant a of the 

resolution function is obtained for a given value of By from 
exp {-a(BT)'}= 10 -a. The background is calculated at the 
position 7. (The two functions shown are scaled to the same 
maximum value at e = 0.) 

R3 

1.0 

0-9 

0.8 ¸ 

0"7 

~ ¥  =0"1 

! I ! I I 
0"2 0"4 0 6  0-8 1"0 B 

Fig.2. R factors as a function of the parameter B, obtained 
with the three-dimensional resolution function (2.3); 7 = 0.1 
and 7=0.01. 
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for very large values of 0) R approaches unity because 
profiles and interference function have nearly the same 
values, as do the respective integrals eR and e. 

A peculiarity, for one and two-dimensional broaden- 
ing, is given by the profiles which run perpendicular to 
the directions of broadening: these profiles always 
have smaller values than the interference function. 
Thus the restriction of instrumental broadening to only 
one or two dimensions has the effect that the intensity 

R2 

1"0 

0"9 

0"8 

O'=0* 

0'=30" 

0'7 

0'6-1" \ "~ 0'=60" 

0'5. 

, 0"4 ,[ 

. • ,. 0%90 ° 
' 0"3 I I I I I 

0"2 0'4 0'6 0'8 1 '0 B 

Fig.  3. R factors  as a f u n c t i o n  o f  the pa ramete r  B, ob ta ined  
w i t h  the t w o - d i m e n s i o n a l  reso lu t i on  f u n c t i o n  (2.4) ;  7 = 0 . 1 .  
0 ' = ' 9 0  ° defines t h e  p lane  o f  ins t rumenta l  b roaden ing  
(x'y" plane). The background and R2 were calculated for 
-0"=0, 30, 60, 90 °. 

, m 1 0 ~  0'=90 o 

o01 ---0=ooo 

- o.7 

0'6 " 

=i- ~ "  . . . , . . . . .  e ' = 0 ;  

• 0~ 
• , 

Fig. 4 .  R t'actors as  a func t ion  o f  the p a r a m e t e r  B, ob ta ined  
with the 0ne-dimensional resolution function (2.5); 7 = 0.1. 
0'=00 defines the line of instrumental broadening (z' axis). 
The background and R 1 were calculated for 0'=0, 30, 60, 

: :90 . . . . . . .  . . . .  

is primarily 'pushed' into the plane or line of broaden- 
ing and 'subtracted' from the space perpendicular to 
that plane or line respectively. This is the reason why 
R2 and R1 are smaller than R3 if the background is 
calculated in the plane (0 '=90  °) or line ( 0 ' = 0  °) of 
broadening respectively. In the case of two-dimen- 
sional broadening the 'subtraction' of the intensity 
from the z '  direction (0' =0  °) and its neighbourhood 
even has the effect that the intensity maximum is no 
longer at the centre (at O=0) but rather along a ring 
around the centre (0=constant, 0 ' =  90 °) in the plane 
of broadening, cf. Fig. 6. In the one-dimensional case 
the intensity maximum is not observed to lie at two 
points 0 > 0 on the line of broadening, cf. Fig. 7. Here 
the intensity is subtracted from the whole plane 0 ' =  
90 ° and its neighbourhood so that the subtraction of 
intensity in the centre of the plane at O = 0 only amounts 
to a small part of the total subtraction. 

In order to judge the effect of instrumental broaden- 
ing on the TDS correction c~-a' in actual practice, 
one has to assess the range of the B factors that would 
correspond to normal experimental situations. We can 
do this, at least approximately, with the aid of the 
profiles in Fig. 5. The profile H(O) represents the de- 
crease of TDS intensity, taken from a reciprocal-lat- 
tice point. The profile of the Bragg peak is not shown 
in Fig. 5, but we know that it has fallen to 10 -3 of its 
maximum value for that value of O which is given by 
putting B = 1. Thus, for the two profiles drawn in Fig. 5 
the Bragg peak is reduced to 10 -a for 7=0.1 and 7= 
0.05 respectively. As Fig. 1 shows, for B =  1 the point 
7 of background calculation marks a position which 
lies 'beside' the Bragg peak but is still fairly close to 
it. For B = 1 we may call the point 7 the 'effective radius' 
of the Bragg peak in reciprocal space; beyond this 
radius the Bragg peak has only negligible intensity. 
(For the three-dimensional Gaussian function (2.3) 
99.67°/'0 of the total intensity lies within the sphere 
which has the 'effective radius'.) Now, if the back- 
ground is calculated at the 'effective radius' of the 
Bragg peak, we find from Fig. 2 that the R factor is 
about 0.80, and hence the overcorrection amounts to 
20 % of the correction ~ - ~ ' .  This may be considered 
as the upper limit likely to occur in practice. If the 
backgroud is calculated at twice the 'effective radius' 
of the Bragg peak (this corresponds to the curve with 
B=0.5 in Fig. 1) the R factor is about 0.95, and thus 
the overcorrection amounts to 5 % of ~ - ~ ' .  For three 
times the 'effective radius' (B= 0.33) we obtain an over- 
correction of about 3 %. Hence B values of 0.4 to 0.8, 
and thus overcorrections of 3 to 11% of a -  ~' may be 
expected in normal experimental situations. 

5 .  C o n c l u s i o n s  

The calculations with our simple model confirm Coch- 
ran's (1969) conjecture that, due to the effectof limited 
instrumental resolution, the TDS correction e - e '  is 
generally too large. The overcorrection is considerable 
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if the range of measurement is small and approaches 
the Bragg peak closely. Then it may attain 20 % or 
more of ~ - ~ ' .  In actual practice such a large value of 
the overcorrection will rarely be realized because the 
range of measurement is generally large in two direc- 
tions, namely in those directions of reciprocal space 
which are given by the area of the detection window. 
It is in this area where the intensity of the back- 
ground is averaged, and this area often extends, say, 
to twice or three times the 'effective radius' of the Bragg 
peak. This corresponds to B=0.50 to 0.33, and, from 
our three-dimensional results, to an overcorrection of 
3 to 5 %. Since, in the direction of scan the background 
is often measured closer to the Bragg peak than twice 
the 'effective radius', one would expect the vercoor- 
rection to be larger than 5 % in actual cases. 

There are essentially two main cases of intensity cor- 
rection, and with respect to them we can draw the fol- 
lowing conclusions. 

(1) A TDS correction is not performed since, as a 
rule, the elastic constants of the crystal are unknown 
and programs for calculating the correction are not at 
hand. This holds for the great majority of structure 
determinations. In this case it is suggested that the 
background measurement is performed as close as pos- 
sible to the Bragg peak and that the detection window 
is kept as small as possible. Then the correction ~ - ~ '  
will already be small and the R factor notably smaller 

I 
I 
I 
I 
I 
I 
I 

I i(p) 
I 
I 

I By=0"05 

\"  Xk~... H(p) 
\ ~., By=0"1 

0"025 0"050 0"075 0"100 P 
Fig.6. Interference function l~(o) and profiles H(Q), obtained 

with the two-dimensional resolution function (2.4), for 
By=0.1 and B7=0.05. The profiles are in the plane of 
instrumental broadening, 0' = 90 °. 

\ 
'l 

I 
l jR (P )  

l By =0"05 
I 
l 

I 
"""~",,. ~ ~  H( p ) 

" \ ~  By =0"1 

~ um".mr.--~-.a.".'.'.'.'.'.'.'.=~.aL-_-,-R ..nu ~,Ir ~ 

I I I I • 

0"025 0"050 0"075 0"100 0"150 P 

Fig. 5. Interference function lJ0) and profiles H(0), obtained 
with the three-dimensional resolution function (2.3), for 
B7=0.1 and B7=0.05. 

than unity, whereby the proper correction R(a- ~') will 
be even more reduced. 

(2) The elastic constants are known and the TDS 
correction is performed. There are two cases. 

(a) Resolution is not taken into account and only 
~ - ~ '  is determined. In this case one would conclude 
that it is best to perform the background measurement 
far from the Bragg peak and to open the detection win- 
dow wide. Then R will be about unity. The disad- 
vantages of this procedure are, however, that the meas- 
urement of the peak contains an unnecessarily large 
amount of background, which impairs the counting 
statistics. Furthermore, the TDS correction becomes 
large in itself which gives rise to larger errors if, for 
some reason or other, the correction is not properly 
evaluated. Thus only a compromise with respect to all 
sources of error seems to be possible. 

(b) Limited instrumental resolution is (partially) 
taken into account. The best solution so far obtained 
seems to be the procedure proposed by Walker & Chip- 
man (1970) and by Jennings (1970). This procedure 
consists of evaluating the one-dimensional resolution 
function in the direction of scan and of opening the 
detection window so that the effects of instrumental 
broadening are eliminated in the other two dimensions 
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(area of background measuremen0. For a finite size 
of the detection window the errors of this procedure 
seem to lie in the range of 1 to 3 % of the correction 
e - e ' ,  provided that all other details of the correction 
are performed without any errors. 

I am indebted to Mrs H. Kruse for having written 
most of the programs for numerical integration and 
for having carried out the computations on an IBM 
360/65 computer. I acknowledge the discussions on 
thermal diffuse scattering which I have had with Pro- 
fessor W. Hoppe. 

APPENDIX 

(1) Derivation of the profile H(O) and the integral eR 
with the three-dimensional resolution function (2.3) 

Because of the spherical symmetry of the profile (3.6) 
the integrations over 0'  and ~' in (3.7) result in the 
spherical angle 4~z. Thus essentially three integrations 
have to be performed: over 0, ~0; over r; over 0. There 
are six possible sequences for carrying them out but 
only one can be accepted: (1) 0, ~0, (2) Q, (3) r. With this 
sequence only one integration (over r) is left to be 
carried out numerically; every other sequence leaves 
two integrals unresolved. 

t 
l !"-- H(p) 

, ,  
, \  \ 

0"025 0"050 0"075 0"100 P 
Fig. 7. Interference function I,(o) and profiles H(0), obtained 

with the one-dimensional resolution function (2.5), for 
BT=0"l and B7=0"05. The profiles lie along the line of 
instrumental broadening, 0 '= 0 °. 

We begin to integrate equation (3.6) over the vari- 
ables 0 and ~0. For this double integral a standard form 
exists, cf. Ryshik & Gradstein (1963, p. 217), and we 
obtain 

H(0 )=  C exp (-ar2)r  2 
r = 0  

i +l dtdr 
x 2zc (A 1) 

-1 N~2+Q2+r2-2ort  

Because of the spherical symmetry o f /1  and G the 
profile does not depend on the angles 0'  and ~0'. The 
integral over the variable t can be evaluated by using 
standard forms, and this leads to equation (3.9). In 
order to obtain eR we substitute the result (3.9) in 
equation (3.7), write the logarithm of the ratio as the 
difference of the logarithms, and perform the integra- 
tion over the angles 0'  and ~0', which gives the spherical 
angle 4re. Then we obtain 

era = C 4z~ exp ( -  ar2)r 2 
r = 0  

x I v rc _0 {In [(0 + r)2 + NZ 2] 
o=0  r 

- I n  [ (0 -  r) z + Ni-2]}dodr. (A2) 

We abbreviate the definite integral over 0 to D(r,y). 
In order to perform the integration over Q one now 
has to substitute x = Q + r and x = Q -  r respectively. 
Then one obtains the integrals 

I Q + ry+ In [(e Nl-2]de 

=Ix(In  xZ+Nl-Z)dx +r I ln (xZ+ N~-2)dx. (A3) 

The two integrals can be evaluated by using standard 
forms cf  Ryshik & Gradstein (1963, p. 120) and Rott- 
mann (1960, p. 145). If  we substitute the old variable 
0 in the solutions obtained and set the limits Q--0 and 
Q = 7 we finally obtain 

{ 1  [ (y+r )2+N~ -21 
D(r,y)=Tr - f f ( yZ-r2+N1-2)  In [ ~ = r ) 2 + N l :  ~ 

- -~--2 [arctanN1 {Nl(y+r)} +arctan {Nl(y-r)}]}  + 2rgy. 

(,44) 
From equations (A2) and (.44) our result (3.8) for eR is 
established. If, in the limit, we put Nl=cx~ then 
D(r,7) is reduced considerably. We have also derived 
the corresponding expression directly from equation 
(A2) which confirms our result (A4). For N1 = oo a sin- 
gularity arises in D(r, 7) for r = 7 which causes difficulties 
in the numerical integration over the variable r. There- 
fore we have derived equation (A4) for finite values 
of N1. 
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(2) Derivation of  the profile H (0'0) and the integal O~R 
with the two-dimensional resolution function (2.4) 

The angle ~0 is in the xy plane, while 0 =  90 °. Then 
z = 0 ,  rZ=x2+y 2, and the volume element of integra- 
tion is rd~odr. Using the two-dimensional resolution 
function (2.4) we obtain for the profile 

H(O'~o'o)=c-a 1 °° 12'~ exp (-ar2)rd~odr (A5) 
r=0 ,tp=0 

× [Nz-zWQ2+r2--2Qr(cos ~o sin 0 '  cos ~p' 

+ sin ~ sin re' sin 0')]-z.  

Because of  the symmetry of  the resolution function 
the profile does not depend on ~0', and any value of  tp' 
is allowed, tp '=0 ° and ~' = 9 0  ° are expedient since the 
solutions of both the resulting integrals over tp are 
known in the limits from 0 to re/2 (cf. Rot tmann,  1960, 
p. 164). Since both these definite integrals have the 
same value the total integral in the limits from 0 to 2re 
is four times as large. Thereby the result (3.11) is 
established. 

In order to determine ~R we have to insert the profile 
(A5) into equation (3.7). Instead of first integrating 
over 0, (a we can equally well begin by integrating over 
0', ~o'. With the second integration over o we then ob- 
tain D(r, 7). The final integration over q~ gives 2re, 
which establishes our result (3.10) for ccR2. The result 
(3.10) can also be gained from the result (3.8) for CCR3 
by introducing a suitable parameter  c in the three- 
dimensional resolution function and then evaluating 
the limit for c--~ c~. This establishes an independent 
control for equation (3.10). 

(3) Derivation of  the profile H (O'O) and the integral o~R 
with the one-dimensional resolution function (2.4) 
The broadening may extend in the z direction, then 
0 = 0  ° for the positive and 0 =  180 ° for the negative z 
direction. (a is not relevant. The volume element is dr. 

Using the one-dimensional resolution function (2.5) 
we immediately obtain the profile (3.13). In order to 
determine eR we have to insert the profile (3.13) into 
equation (3.7). D(r, y) is obtained as in the two-dimen- 
sional case, and it has the same value in the positive 
and negative z directions. Thereby equation (3.12) is 
established. 

(4) Remark 
In the limit for N1 --+ c~, Nz- 2 ~ 0, the formulae for 

7R reduce to simpler ones which can also be derived 
independently by direct integration of the basic equa- 
tions. Furthermore,  it can be shown in all cases that, 
in the border case of ideal resolution, 7R approaches co, 
and the profile H approaches the interference func- 
tion lz. 
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